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Improved treatment of Fresnel equations 
M A B Whitaker 
Department of Physics, New University of Ulster, Coleraine, N Ireland 

Received 16 April 1978 

Abstract. Present treatments of the Fresnel equations are criticised. A full treatment 
without the defects is presented, the amplitudes and phases of the electric fields being 
calculated, and curves displayed for a variety of cases. 

1. Introduction 

The Fresnel equations, which describe the behaviour of an electromagnetic wave at a 
plane surface, have a fundamental importance in any study of electromagnetism, and 
also have many practical applications. 

They are straightforward in principle, though not without subtleties in their detailed 
analysis. Nevertheless it is extremely surprising that there appears to be no treatment 
available which covers all cases in an adequate manner. Many works (e.g. Jeans 1925, 
Jackson 1962, Lorrain and Corson 1970), while presenting general analysis of the 
dielectric-dielectric boundary, specialise, for the dielectric-metal boundary, to the 
assumptions of normal incidence or high conductivity. 

The treatments usually referred to as standard-those of Stratton (1941) (to be 
referred to as S) and Born and Wolf (1965)- consider the metal-metal boundary for 
general angle of incidence and conductivity, but these treatments, which are virtually 
identical, are unsatisfactory as a number of quantities are incompletely defined, and the 
presence of these causes the expressions for the amplitudes and phases of the reflected 
and refracted waves to be ambiguous. It might also be mentioned that the form in which 
these authors present their results is extremely complex, so that their use is far from 
straightforward. 

There seems therefore a need for a treatment such as that given in this paper, in 
which expressions are obtained for the various fields which are completely unam- 
biguous. Although lengthy they are absolutely straightforward and are completely 
general, applying for example to the case of total internal reflection. 

The technique has been used by Whitaker (1978) in the specific application of the 
Fresnel equations to the theory of angular photoemission. In the present paper the 
general analysis is presented, which includes magnetic media, and concentrates on 
reflected and refracted rays rather than Cartesian components of the total vector 
potential. 

2. Conventions used in electromagnetism 

It may be worth briefly reviewing the conventions used in electromagnetism, as a 
correct use of the convention chosen is vital in what follows. 
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The initial choice is the trivial one between time factors of the form of exp(-iwt) and 
exp(+iot). The form of a plane wave moving in the tz direction is then exp(*ikz T iot) 
and, since k is equal to (w f i l c ) ,  where ti is the complex refractive index, to ensure 
attenuation f i  must be written as n l f i n 2  with n2 positive, and F as E I * ~ E ~  with €2 

positive. Here we take time factors of the form exp(-iwt), and so the dielectric constant 
is written as + ir2. 

3. The complex angle of refraction 

Our notation is as follows. The radiation is incident on the surface of a metal of 
dielectric constant cl, + iEZm, and permeability p,, from a dielectric of dielectric 
constant Ed and permeability pd. The angle of incidence is Od. The z axis is along the 
normal to the surface, z increasing as we move into the dielectric. The plane of 
incidence is the y-z plane, and the incident wave vector has a component along + y .  

0 15 30 C5 60 75 90 
Angle of incidence f d e g )  

Figure 1. Values of p r e ~  for s polarisation as a function of angle of incidence. The values of 
e, in this and the other graphs are: A 0.1; B 0.5; C 0.99; D 1; E 1.01; F 2;  G10; H 100; I 
l+0*5 i ;  J 1+1Oi; K 10+10i; L 100+1OOi; M 0.1+0.5i; N O.l+lOi; 0 0.5+0*5i; P 
0.5 + 1Oi; Q 0.5 +O.Oli. 

The magnitudes of the wave vectors in dielectric and metal are given by 
1 / 2  1 /2  kd= ( W / C ) E d  CLd 

k: = ( w * / c ~ ) ( E I , + ~ E ~ , ) ~ ~ .  

The refracted wave must have the form 

(3.1) 

exp(-ik,z cos B,+ik,y sin 0,). 

The product k, sin 0, is easy to evaluate, as by Snell’s Law it is equal to kd sin 0d and is 
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Figure 2. Values of Grsrl for s polarisation. Curve P is omitted as it lies between J and N. 

thus real. Using Snell's Law again, we find that k ,  cos 8, is equal to 

but further consideration must be given to the choice of root of this complex number. 
At this point Stratton (1941, p 501) writes cos 8, asp exp (iy) and gives expressions 

for p and y. However, y is defined only as modulo IT by his equations, and so he does 
not distinguish between two values of cos 8, differing by a factor of -1. Thus his 
quantities p and q, real linear combinations of p cos y and p sin y, are defined only in 
magnitude and not in sign (Stratton 1941, p 503). The values of the components of the 
electromagnetic fields subsequently found by Stratton are thus not determined 
uniquely. 

We put 

(3.2) 

(3.3) 

(3.4) 

Since €2, is positive, we know that IT z 4 t 0. There are therefore two possible ranges 
for 4/21  IT/^ a 412 a 0, and 31~12 3 412 t IT. 

There are two conditions on k ,  cos 8,. First, so that the wave has a component in 
the +Z rather than the -z direction, the real part must be positive. Secondly, for the 
wave to be attenuated, the imaginary part must be positive. Both considerations lead to 
the range for 412 being  IT/^ t 412 t 0. 
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This value of k, cos 8, will now be used in the Fresnel equations. (Only the product is 
needed; k, and cos 0, themselves can each only be defined to within a factor of -1.) 

4. General form of Fresnel equations 

For each wave we initially define time-independent quantities; for example the electric 
field of the incident wave is written as 

Eo eXp(-ikdZ COS 8 d  + ikdy Sin 8 d )  eXp(-id). 

Eo is independent of time; for each mode of polarisation, one direction must be defined 
as the positive direction. Fors  polarisation (E normal to the plane of incidence) Eo, and 
the analagous quantities Erefr and Ere f l ,  are defined as positive when EO, Erefr and  ere^ 
are in the +x direction. Bo and Brefr are positive when the corresponding vectors have 
components in the -y and -z directions; for Brefl, the components must be in the + y  
and -z directions. 

For p polarisation ( E  in the plane of incidence), it is convenient to define Bo, Brefr 
and BreR as positive when the vectors lie in the +x direction. Eo and Erefr are positive 
when the vectors have components in the +y and + z  directions; for EreR, the 
components must be in the -y and +z  directions. 

(Though these considerations may seem tedious and elementary, without explicit 
definitions algebraical results are meaningless; the diagrams of Stratton (1941, pp 
493-494), for instance, seem less than completely satisfactory.) 

Figure 3. Values of prcfr for s polarisation. Curves N and Pare omitted as they lie extremely 
close to J. 
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Figure 4. Values of Srcfr for s polarisation. 

4.1. s polarisation 

Applying the boundary conditions in the conventional manner, we find for  ere^ in this 
case 

The corresponding quantity for the refracted wave, Ererr, is given by 

(4.8) 1/2 1 f 2  1 f 2  1 /2  1 f 2  
E r e r r / E 0 = 2 p m E d  cos @d[(pmeA/2  COS @ d + 2 -  @ d  U + ) - i 2 -  /Ad U-]/fl .  

With similar definitions as in equation (4.4) 

(4.9) 

(4.10) 

(4.11) 
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Angle of incidence ldeg) 

Figure 5. Values of prefl for p polarisation. 

( 4 . 1 5 )  

COS t iref l=~Wd(E:m + E : , )  COS’ e d - ~ d ~ ” ’ l / { p i  cos4 e d ( E f m  +E:ml2  

+ E ~ S  + 2 p d E d  COS’ ed[-Elmpm(E:m + E L )  + E d p d  sin2 ed(c:, - ~ 2 m ) ] } ” ~ .  2 

( 4 . 1 6 )  

Discussion of the electric field of the refracted wave is a little more complex in this 
case. (Of course, if magnetic rather than electric fields are calculated, the modes of 
polarisation are interchanged apart from signs and constants.) It is convenient to start 
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Figure 6. Values of Srefl for p polarisation. Curve P is omitted as it lies between J and N. 

0 15 30 15 60 75 90 
Angle of incidence Ideg) 

Figure 7. Values of py for p polarisation. Curves N and P are omitted as they lie extremely 
close to J. 
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Figure 8. Values of 6, for p polarisation. 

From Maxwell’s equations the components of the electric field in the metal may be 
obtained. Because these are not in phase, they cannot be combined in a satisfactory way 
into an expression for a refracted wave, and will be given individually: 

1/2  1/2  1 / 2  
/.&d E d  Ey/Eo = { 2 k m € d S 1 / 2  + 2 cos 8d[u+(s’/2 + E d g d  Sin2 6,) 

+iU-(Ed/bd  sin2 ed-s’”)]} cos e d / f 3  

py = {4E&m cos2 8dS1/2/t3}1/2 

(4.18) 

(4.19) 
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5. Special cases 

These formulae are completely general, and reduce in special cases to the simpler 
formulae. 

5.1. E ~ , , , = O  

For the case where is zero (elm being positive), there are two types of situation. If 
2 

E l m p m  > E d p d  Sin 6 d  then 

(5.10) 

It is easy to show that E,  and E, combine in this case to give a refracted wave at the 
appropriate angle given by Snell’s Law. 

If, however, elmpm < E d p d  sin2 e d ,  we are in the region of total internal reflection. 
Here 

1/2 1 /2  2 
f 4 = p d  E l m  COS e d + E d  ( E l m p m - E d p d s i n  8d)1/2a 

2 
E d p d  sin e d  - E l m p m  

s’/2 = 

cos(4/2) = 0, 
U +  = 0, U-=2 s 

sin(q5/2) = 1 
1/2 1/4 

(5.11) 

(5.12) 

(5.13) 

From equation (3.2), and the form of the refracted wave in 9 3, we see that the 
amplitudes of the field will indeed decay exponentially as we move into the ‘metal’. It is 
obvious that PreO = 1, and prefr, S r e ~  and Srefr may be found easily. 
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Figure 9. Values of pm for p polarisation. Curves H, J, K and L are omitted as all values are 
too small on this scale. Their form is similar to curve M for example. Curves N and P are 
omitted because they are extremely close to G. 

5.2. Normal incidence 

For normal incidence 

(5.14) 

(5.15) 

The interesting point about this case is that the two modes of polarisation should 
become identical. Calculation of the various quantities shows that this is indeed the 
case, except for SreR where there is a difference of T between the two expressions. This 
is a direct result of our choices of positive direction at the beginning of 0 4. For p 
polarisation, the positive direction for Erefl is opposite to that for Eo in this case, wheieas 
for s polarisation the directions are the same. There is no similar difficulty for the 
refracted wave if py and 8, are defined as prefr and arefr. 

5.3. High conductivity 

In the case of high conductivity we have 
2 2  

S = e ~ m ~ m  

cos(4/2) = sin(4/2) = 2-’12 
1 / 2  1 /2  

U +  = U- = Ezm/.Lm , 

(5.16) 

(5.17) 

(5.18) 
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Figure 10. Values of 6 ,  for p polarisation. 

All the usual formulae may be obtained. For the case of s polarisation, prefr is very small, 
while preR is only just less than unity: 

(5.19) 

(5.20) 

112 112 112 112 
P r e f r =  ( 2 w m  E d  cos e d ) / ( F d  €2117 

Prefl=1-[2 3 /2  p m  1/2  E d  112 cosed/pd 112 E 2 m 1  112 

Srefr is ~ / 4 ,  while SreR is T.  Similar results are obtained for p polarisation. 

6. Conclusion 

The various quantities have been evaluated for a number of cases. (Ed, p d  and gm are 
put equal to unity.) A great variety of behaviour is displayed, although it could still not 
be claimed that the coverage is complete. No treatment in any way as comprehensive as 
this appears to be available. 
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